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Abstract

Accurate recognition of emotions has many applications, but it is challenged by di�culties in collecting

emotions in the wild. While naturally occurring emotions are expensive to collect, the inherent bias

in their distribution further confounds the issue. The random sampling method frequently employed

by researchers fails to overcome these limitations. We propose an adaptive sampling method based on

active learning as an alternative to collect emotions with balanced distribution while reducing burdens on

users. The e↵ectiveness of adaptive sampling is empirically evaluated with the K-EmoCon, the dataset

of continuous emotions and physiological signals collected in the context of naturalistic conversations.

The tradeo↵ between collecting balanced data and querying informative samples is also explored with a

parameterized query strategy.

Keywords human-computer interaction, a↵ective computing, experience sampling method, machine

learning, active learning



Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapter 1. Background & Summary 1

Chapter 2. Related Works 4

2.1 Theories of Emotion and Recent Advances in the Field . . . . . 4

Chapter 3. Data and Methods 6

3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.2 Dataset contents . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Feature extraction from physiological signals . . . . . . . 10

3.2.2 Deep networks for physiology-based emotion recognition 12

3.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Binary classification of emotions . . . . . . . . . . . . . . 14

3.3.2 Query strategy for active learning . . . . . . . . . . . . . 14

3.3.3 Online active learning . . . . . . . . . . . . . . . . . . . . 17

3.3.4 Evaluation metrics for imbalanced data . . . . . . . . . . 19

Chapter 4. Experiments and Results 20

4.1 Baseline Classification . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.2 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Simulated Stream-based Active Learning . . . . . . . . . . . . . 21

4.2.1 Query selectivity and model performance . . . . . . . . . 23

4.2.2 Tradeo↵ between uncertainty and minority sampling . . 24

4.2.3 Rebuilding models per updates . . . . . . . . . . . . . . . 26

4.2.4 Deep active learning . . . . . . . . . . . . . . . . . . . . . 28

Chapter 5. Discussion: Limitations and Future Works 29

Chapter 6. Conclusion 31

i



Acknowledgments 42

ii



List of Tables

3.1 Summary of multimodal emotion datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Wearable sensors for collecting physiological signals in K-EmoCon . . . . . . . . . . . . . 9

3.3 Contents of the K-EmoCon dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Features extracted from physiological signals . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Baseline classification results with XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Baseline classification results with LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



List of Figures

2.1 Russell’s circumplex model of a↵ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Data collection session setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Screen capture of a debate footage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Wearable sensors used for the K-EmoCon construction . . . . . . . . . . . . . . . . . . . . 9

3.4 Resampling techniques for BVP and ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 The distribution of self-reported arousal and valence labels in the K-EmoCon dataset . . . 13

3.6 Query probability functions for uncertainty sampling. . . . . . . . . . . . . . . . . . . . . 15

3.7 Query probability functions for paremeterized uncertainty-minority sampling. . . . . . . . 16

4.1 Confusion matrices for the baseline classification with XGBoost. . . . . . . . . . . . . . . 21

4.2 Confusion matrices and train/validation losses for the baseline classification with LSTM. . 22

4.3 Learning trajectories of XGBoost-based active learners without target coverage and 60s

input features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Learning trajectories of XGBoost-based active learners with target coverage = 60%. . . . 24

4.5 Learning trajectories of XGBoost-based active learners at varying levels of ↵ and �, with

� = 1 and �
⇤ = 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6 Learning trajectories of XGBoost-based active learners at varying levels of ↵ and �, with

� = 0.1 and no target coverage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.7 Learning trajectories of XGBoost-based active learners with model rebuilds after each

update. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.8 Train and validation losses of LSTM-based active learners for arousal classification. . . . . 28

iv



Chapter 1. Background & Summary

The goal of automatic emotion recognition is to endow machines with emotional intelligence [88, 124], to

allow them to understand human emotions. Such ability of machines can have many uses, ranging from

medical applications including the prognosis, diagnosis, and treatment of mental illnesses [87, 108, 138],

the development of more human-like virtual intelligent assistants capable of recognizing, understanding,

and even possibly expressing emotions [101, 115], to the addition of simple emotional skills to smart

home appliances to lubricate their social interaction with users [14, 75, 116]. This idea of giving a

machine a quality that is most human of all has been a long-sought goal throughout our scientific

endeavor and recently developed into a branch of its own in computer science since Picard established

the field of A↵ective Computing [107]. So far, many researchers have contributed to the field to develop

systems capable of recognizing emotions from multiple modalities, which include facial expressions [89,

94, 96], utterances [113, 140], gestures [51, 72], writings [4, 146], and physiological signals [18, 99, 110],

and recently with the rapid development in the field of Artificial Intelligence, in the particular lead by

advances in deep neural networks, the field is flourishing with algorithms capable of accurate detection

of human a↵ective states.

Nonetheless, the problem of emotion recognition is far from being solved, given the inherent perplex-

ity of emotions and limitations in the real-world application of the emotion recognition technology. While

the detection of explicitly observable manifestations of emotions such as facial expressions and speech

is straightforward [16] and often systems based on those modalities are su�cient to be commercialized

as software such as MS Azure facial recognition API and A↵ective Media Analytics tool, their usage is

limited to narrow target scenarios, as certain configurations of facial muscles or timbre of speech do not

capture the entirety of a person’s internal state. In the wild, human facial expressions and speeches are

intentionally regulated often to deter the decoding of underlying the a↵ective state [46], which is entirely

natural from an evolutionary and social standpoint [11, 73]. Our emotions are not absolute nor discrete

nor 2-dimensional; emotions are more than a number of expressions on our faces [7]; possibly emotions

are not even countable, without an injective mapping to individually discernible biophysical states, and

are only definable in the context of social interactions and relationships which the emotions occurred.

On top of these complications associated with emotions, naturalistic emotion data is notoriously

di�cult to acquire compared to other types of data such as images of cars or human writing in di↵erent

languages. At the root of this problem is the ambiguity in what constitutes as ground truth for emo-

tions [28]. Broadly, there are two ways for annotating emotions: with self-reported labels from subjects

who experience emotions first-hand or with perceived labels from external observers [154]. If these two

labels concur, then we have a ground truth, but the agreement is rare for emotions naturally occurring in

interactions involving multiple individuals. Another issue is the di�culty of capturing natural emotions

in the wild. To capture emotions, researchers need to interrupt people when they experience or observe

emotions to produce annotations or ask to assess emotions retrospectively. Nevertheless, both in-situ

and retrospective approaches to emotion annotation are subject to biases [78, 79, 120]. When asked to

report their emotions at the moment, people may be urged to censor negative emotions to appear more

socially favorable [20]. This social desirability bias similarly influences emotions reported in retrospect,

which are also subject to human memory’s fallibility. Of course, information associated with emotion

labels such as facial expressions need to be gathered together to develop emotion recognition systems,

1



and this cannot avoid the issue of privacy violation.

Given these obstacles, collecting emotions in controlled environments such as laboratories with

stimuli designed to induce specific emotions has been the most widely employed approach for emotion

research [1, 30, 54, 65, 74, 85, 90, 131, 134, 136], as this approach can mitigate the issue of ground

truth and cognitive biases in emotion labels. Simultaneously, the concern for privacy violation can be

reduced with the explicit approval of subjects for data collection. However, again, the generalizability

of emotion recognition systems trained with data collected in controlled environments is questionable if

such systems are to be used in realistic situations. As noted, emotions are highly context-dependent [8,

21, 22] and also subject to individual variability [53, 76]. The modality of inputs to emotion recognition

systems is also an issue, as it is simply implausible to monitor someone’s facial expression or speeches

with current technologies without violating the privacy of others.

Altogether, the issues in collecting naturalistic emotions for developing a system that can recog-

nize emotions in a real-time call for an approach capable of probing emotions at opportune moments

without imposing too much burden on subjects and involves a noninvasive method for collecting a↵ec-

tive information associated with emotions. In light of that, Experience Sampling Methods or Ecological

Momentary Assessments (ESM/EMA) [33, 77, 132] is widely used in recent years for emotion-related

research [52, 97, 143], not only as a tool for observation and data collection but as means of intervention

as well [59, 102, 147], together with passive data collection from mobile and wearable devices [3, 84, 95,

109, 145] or even social networks [121]. While the reliability of self-reported emotions via ESM remains

an issue, ESM is well received in the field as it supports the assessment of emotions in the circumstances

inaccessible with traditional methods and studying emotions in dynamically changing contexts involving

varying interactions and events, thus expanding the domain of emotion research beyond the laboratories

to the real world.

In the real-world adoption of the ESM for emotion research, however, major pitfalls of the method

are the exhaustive data collection process compromising the ecological validity of research and the mea-

surement e↵ect arising from repeated answering of ESM questionnaires a↵ecting emotions [23, 35, 126].

Further, the e↵ect of an ESM study on what it intends to measure, i.e., emotions or symptoms of an

ailment, and the quality of collected data are subject to numerous variables, including the design of an

experiment and a survey instrument [56], the sampling frequency and the survey length [38], the total

duration of the experiment [141], and in particular, the timeliness of an ESM survey, not only because

when the measurements are taken relates to what emotions are collected [37], but the distribution of emo-

tions in the wild is inherently imbalanced [153]. While previous studies employed various approaches to

collect emotions in the wild, from the frequently employed randomly triggered [61, 91] or event-triggered

questionnaires [60, 71, 81, 137], all methods are subject to biases from the underlying distribution of

emotions, self-selection, and attrition.

An adaptive experience sampling method that does not rely on a heuristic to trigger questionnaires

in that regard can be an alternative to traditional approaches for the in-situ collection of emotions. In

part motivated by the interruptibility research [45, 111] that aims to allow computer systems to discover

opportunities to interrupt human users at moments that are most appropriate for an interaction, instead

of manually scheduling ESM questionnaires, an adaptive ESM would use an algorithm with specific

objectives to determine the most opportune moments for sampling emotions. This idea has been explored

with a rule-based approach balancing interference and data fidelity [50], annotation prediction based on

active learning and semi-supervised learning [83], modeling of interruptibility from mobile phone usage

and contextual information [106], and decision-theoretic models built upon predictive models [64, 117].

2



In the same vein, this work investigates the possibility of applying an adaptive experience sampling

method for collecting emotions in the wild. Towards that goal, we use the K-EmoCon [105], a multi-

modal emotion dataset of continuous emotions in during debates, and train physiology-based emotion

recognition models with physiological signals and continuous emotions annotations in the dataset via

active learning [128] in an environment simulating a realistic emotion data collection scenario. In that

process, we explore the prospects of active learning for overcoming the challenges proposed by the im-

balanced distribution of naturalistic emotions in training emotion recognition models and evaluate the

e↵ectiveness of active learning for reducing the burden of users in emotion data collection. Further, we

observe how di↵erent configurations of query strategies in active learning a↵ect the performance of a

resulting emotion recognition model and their implications in learning from imbalanced data, using a

parameterized query strategy combining uncertainty sampling and minority sampling with additional

parameters � and � controlling for the selectiveness and the coverage of an active learner. In summary,

the contributions of this work are as follows:

• We extend the research of experience sampling for emotions in the wild by assessing the viability of

active learning for adaptive sampling of emotions in the realistic emotion data collection scenario

and demonstrate that a comparable performance can be obtained for emotion recognition models

by using only 60% of the full dataset with active learning, which translates to the possibility of a

significantly reduced number of queries and user burdens in emotion data collection.

• We assess the technical validity of K-EmoCon, a recently published dataset of multimodal a↵ect

information and continuous emotion annotations in emotion recognition research, by developing

physiology-based emotion recognition models with potential applications in real-world scenarios.

• We explore the implications of di↵erent query strategies, especially the query selectivity of a model

and the tradeo↵ between uncertainty and minority sampling, by training active learning models

for emotion recognition using the naturalistic emotion dataset with imbalanced distributions and

the parameterized query strategy, and discusses the importance of careful exploration during the

early stage of training an active learner.

3



Chapter 2. Related Works

2.1 Theories of Emotion and Recent Advances in the Field

Despite the common occurrence of emotions in daily lives, there is no consensus on the scientific

definition of emotions. They are often confused with mood, temperament, personality, and other psy-

chological constructs, while researchers di↵erentiate between emotions and moods/sentiments/traits,

as emotions are intentional, i.e., object-directed, and moods are not, for example, depression [13, 48].

Moods also tend to last longer and a↵ect our cognitive strategies, while emotions bias our actions [34].

Sentiments, on the other hand, are assigned properties of an object rather than states of an individual,

like how we would say a movie was “great” or “disappointing.” Then Basic Emotion Theory (BET) of

Ekman [39, 40] argues for 6 basic and universal emotions of happiness, surprise, fear, sadness, anger,

and disgust [42]. The term “basic” indicates that the six emotions are separate in terms of physiology,

appraisal, antecedents, response, and exist across species, and “universal” as they exist across cultures.

Other theories model emotions using a number of dimensions, from Russell’s Circumplex Model of

A↵ect with two dimensions of arousal and valence [119], a similarly two-dimensional Plutchik’s Wheel

of Emotions [112], to the Hourglass Model of Emotions with four dimensions of pleasantness, sensitivity,

aptitude, and attention [19]. The most widely used among the dimensional models of emotions is the

2D circumplex of a↵ect, given the succinctness of the 2-D space and ease of use for simple surveys.

Nonetheless, the latest findings in emotion research suggest that emotions are not restricted to six

discrete categories nor several quantifiable dimensions. Recent research on facial expressions shows that

emotions are compound [36] — consider how one might simultaneously feel sad and happy on some

occasions, which we informally refer to as a “sappy” feeling. Another research suggests that emotions

are ordinal, i.e., relative rather than absolute [149], despite absolute annotations of emotions prevailing

in the literature.

More recent research in emotion research then suggests over 20 categories of emotions exist beyond

the basic six [29, 32, 67, 69, 133], including Ekman’s basic six and more abstract emotions such as pride,

awe, and love, and proposes that we build a high-dimensional taxonomy of emotional experiences and

expressions [31, 66] using data-driven methods to capture myriads of emotional behaviors, experiences,

and expressions [63]. Yet, it must be noted that these advances do not reject previous theories, including

BET, as they provide a generative framework rather than a definitive framework for emotion research [70],

claiming that basic emotions are not single a↵ective states but a “family of related states.” [41] Further,

the discussion is ongoing, with the advent of social functionalism [68, 73, 142], which views emotions

to serve distinct purposes such as survival and reproduction in society and as means of communicating

information, to reward behaviors, and elicit certain behaviors during interpersonal interactions.
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Figure 2.1: A diagram of an arousal-valence circumplex with approximate placements of emotional words

on the space [103, 125].
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Chapter 3. Data and Methods

In this chapter, we first discuss the data we use to develop and evaluate an adaptive sampling method

for emotions and the techniques for preprocessing physiological sensor data. We then formalize emotion

recognition as a classification problem in the context of adaptive sampling and propose online active

learning strategies based on a parametric query function for sampling/learning imbalanced emotions in

the wild. Finally, we discuss how we empirically compare active learning models’ performance against

o✏ine models trained with full data and our experiments and evaluation strategies to investigate the

tradeo↵ between collecting balanced data and querying informative samples in active learning.

3.1 Data Description

For the implementation and evaluation of an adaptive sampling method for emotions in the wild,

we use the K-EmoCon dataset of physiological signals and continuous emotion annotations collected in

the context of naturalistic conversations. In the following, we discuss the data collection process and its

contents in detail.

Figure 3.1: A pair of participants sitting at a table during a debate: two smartphones on tripods were

placed at the center of the table to capture facial expressions and gestures in the upper body during a

debate. Participants’ faces are occluded per their request for privacy.

6



3.1.1 Data collection

Figure 3.2: A screen captured from actual debate footage of two participants (left: P5 and right: P6).

K-EmoCon is a publicly available multimodal dataset acquired from 32 participants engaging in

10-minute long paired debates on a social issue. It enables studying emotions in the context of natu-

ralistic conversations taking place in a social setting and recognizing continuous emotional states from

physiological signals acquired with commercial-grade wearable devices. For data collection, participants

were randomly assigned into pairs and engaged in a face-to-face debate on the Jeju Yemeni refugee crisis

for approximately 10 minutes. All debate sessions were conducted in a room with controlled temperature

and illumination to minimize environmental variations across debates. As shown in figures 3.1 and 3.2,

two participants sat across a table facing each other with cameras in the middle, recording their facial

expressions and upper body movements, along with speeches during a debate.

Participants wore a suite of mobile, wearable sensing devices during debates for the collection of

physiological signals. The choice of commercially available devices makes the dataset particularly fitting

for our purpose of developing a sampling method for emotions in the wild compared to many other

emotion datasets collected in a controlled laboratory setting with medical-grade devices. See table 3.1

for a detailed summary of the di↵erences between the K-EmoCon and other datasets. Figure 3.3 and

table 3.2 show detailed info on the data collection apparatus used in the construction of the K-EmoCon

dataset, including how the devices were worn, their sampling rates, and the range of collected signals.

All debates were moderated by an experimenter and lasted approximately 10 minutes. Each par-

ticipant took turns speaking up to two consecutive minutes, and the moderator stopped a debate at the

ten-minute mark with some flexibility. After debates, participants annotated their own emotions and

their debate partner’s emotions at the interval of every 5 seconds from the beginning to the end of a de-

bate, respectively watching the footage of themselves and their partners during the debate. Additionally,

five external raters were recruited to annotate participants’ emotions during debates from an external

observer’s point-of-view.

7



Table 3.1: Comparison of the K-EmoCon dataset with the existing multimodal emotion recognition datasets: Posed

emotions are when a subject is instructed to enact a particular emotion while Spon. = spontaneous. Similarly, induced

emotions are when a set of selected stimuli is used for their elicitation. For annotation types, S = self, P = partner,

and E = external observer.

Name (year) Size Modalities
Spon. vs.

posed

Natural vs.

induced

Annotation

method

Annotation

type
Context

IEMOCAP

(2008) [15]
10

Videos, face motion

capture, gesture, speech

(audio & transcribed)

Both Both† Per dialog

turn
S, E Dyadic

SEMAINE

(2011) [90]
150

Videos, FAUs, speech

(audio & transcribed)
Spon. Induced

Trace-style

continuous
E Dyadic

MAHNOB-HCI

(2011) [134]
27

Videos (face and body),

eye gaze, audio, biosignals

(EEG, GSR, ECG, respiration,

skin temp.)

Spon. Induced Per stimuli S Individual

DEAP

(2012) [74]
32

Face videos, biosignals

(EEG, GSR, BVP, respiration,

skin temp., EMG & EOG)

Spon. Induced Per stimuli S Individual

DECAF

(2015) [1]
30

NIR face videos, biosignals

(MEG, hEOG, ECG, tEMG)
Spon. Induced Per stimuli S Individual

ASCERTAIN

(2016) [136]
58

Facial motion units (EMO),

biosignals (ECG, GSR, EEG)
Spon. Induced Per stimuli S Individual

MSP-IMPROV

(2016) [17]
12 Face videos, speech audio Both Both† Per dialog

turn
E Dyadic

DREAMER

(2017) [65]
23 Biosignals (EEG, ECG) Spon. Induced Per stimuli S Individual

AMIGOS

(2018) [30]
40

Vidoes (face & body),

biosignals (EEG, ECG, GSR)
Spon. Induced Per stimuli S, E

Individual,

Group

MELD

(2019) [114]
7

Videos, speech

(audio & transcribed)
Both Both† Turn-based E

Dyadic,

Group

CASE

(2019) [131]
30

Biosignals (ECG, respiration,

BVP, GSR, skin temp., EMG)
Spon. Induced

Trace-style

continuous
S Individual

CLAS

(2020) [85]
64

Biosignals (ECG, PPG, EDA),

accelerometer
Spon. Induced Per stimuli/task Predefined‡ Individual

K-EmoCon

(2020) [105]
32

Videos (face, gesture),

speech audio, accelerometer,

biosignals (EEG, ECG, BVP,

EDA, skin temp.)

Spon. Natural
Interval-based

continuous
S, P, E Dyadic

† A dataset was considered to contain induced emotions if scripted interaction was involved in the data collection, even though no artificial

stimuli (such as an emotion inducing video clip) was used.

‡ Predefined emotion categories of stimuli and success rates of participants in a set of purposefully selected cognitive tasks were used as

ground-truth labels.
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Figure 3.3: Wearable sensors worn by participants during data collection sessions for the construction of

the K-EmoCon dataset.

Table 3.2: Physiological signals collected with wearable sensing devices in K-EmoCon, with respective

sampling rates and signal ranges.

Devices Collected data Sampling rate Range [min, max]

Empatica E4

3-axis acceleration 32Hz [-2g, 2g]

BVP (PPG) 64Hz n/a

EDA 4Hz [0.01µS, 100µS]

Heart rate (from BVP) 1Hz n/a

IBI (from BVP) n/a n/a

Body temperature 4Hz [�40 °C, 115 °C]

NeuroSky MindWave
Brainwave (EEG Fp1) 125Hz n/a

Attention & Meditation 1Hz [0, 100]

Polar H7 HR (ECG) 1Hz n/a
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3.1.2 Dataset contents

The resulting dataset includes data from 16 paired debates, which sum to 172.92 minutes, including

physiological signals, audiovisual recordings of debates, and continuous annotations of emotions from

three distinct perspectives of the subject, the partner, and the external observers. Table 3.3 summarizes

the contents of the dataset.

Table 3.3: Summary of data collection and the contents of the K-EmoCon dataset.

Data collection summary

Number of participants 32 (20 males and 12 females)

Participants’ age 19 to 36 (mean = 23.8 years, stdev. = 3.3 years)

Session duration Total 172.92 min, (mean = 10.8 min, stdev. = 1.04 min)

Annotated emotions

1 - 5: Arousal, Valence

1 - 4: Cheerful, Happy, Angry, Nervous, Sad

Choose one: Common BROMP a↵ective categories +

less common BROMP a↵ective categories [100]

Collected biosignals

3-axis Acc. (32Hz), BVP (64Hz), EDA (4Hz), heart rate

(1Hz), IBI (n/a), body temperature (4Hz), EEG (8 band,

32Hz), ECG (2Hz)

Among the collected data, we focus on physiological signals for the recognition of self-reported

emotions. In particular, we use data collected with Empatica E4 (BVP, EDA, and HST) and Polar H7

(ECG) to predict arousal and valence measured with the 5-point Likert scale. This is as our goal is to

develop an adaptive sampling mechanism that can trigger a self-report questionnaire at an appropriate

moment to sample users’ emotions by monitoring their physiological signals.

3.2 Data Preprocessing

Preprocessing raw physiological data and extracting features capturing characteristics and relation-

ships between di↵erent types of physiological signals is at the core of developing an emotion recognition

system. In the following section, we discuss the procedures in preparing physiological signals and emotion

annotations in the K-EmoCon for the training of emotion recognition models.

3.2.1 Feature extraction from physiological signals

For extracting features from physiological signals, we use PyTEAP [104], a Python implementation

of Toolbox for Emotion Analysis using Physiological signals (TEAP) [135, 144]. TEAP is a toolbox

dedicated to the extraction of features from multiple types of physiological signals, including electro-

cardiogram (ECG), blood volume pulse (BVP), galvanic skin response (GSR), human skin temperature

(HST), electromyogram (EMG), respiration (RES), and electroencephalogram (EEG). While TEAP is

written in MATLAB, we translated TEAP into Python, as it is interoperable with popular machine

learning and deep learning frameworks such as PyTorch, and created PyTEAP.
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Table 3.4: Features extracted from physiological signals with PyTEAP and their descriptions.

Type Feature Description

GSR

Peaks per second average number of peaks in resistance exceeding 100 ohms per second

Mean amplitude mean amplitude of peaks from the saddle point preceding the peak

Mean rise time the average time for GSR to reach peaks from saddle points in seconds

Statistical moments mean and SD

BVP

Interbeat interval (IBI) mean IBI and HRV (SD)

Multiscale entropy (MSE) MSE at 5 levels

Tachogram power log(PLF

x (f)), log(PMF

x (f)), log(PHF

x (f)),
log(PMF

x
(f))

log(PLF
x

(f))+log(PHF
x

(f))

Power spectral density (PSD) log(PLF

x (f)),
log(PLF

x
(f))

log(PHF
x

(f))

Statistical moments mean

ECG (BPM) Statistical moments mean and SD

HST
PSD log(Px(f))

Statistical moments mean, SD, kurtosis, and skew

Compared to TEAP, PyTEAP supports feature extraction for ECG, BVP, GSR, and HSR, which are

the types of physiological signals present in the K-EmoCon. Table 3.4 summarizes features supported

by PyTEAP. The minimum length of signals PyTEAP supports for feature extraction is 25 seconds.

PyTEAP also automatically applies low-pass filters to remove high-frequency perturbations in signals

collected at su�ciently high sampling rates. For K-EmoCon, however, filtering is applied only for BVP,

which has a sampling rate of 64Hz, at 1/8th of the original rate; other signals are used as is given their

sampling rates are already too low for any filtering.

Galvanic skin response – GSR

Galvanic skin response or electrodermal activity is a measure of electrical resistance (or conductivity)

on the skin surface [9, 12]. This value can change with the amount of sweat excretion [6, 62], which is

under the control of the sympathetic nervous system mediating fight-or-flight response. This indicates

that by measuring GSR, one could detect a↵ective states associated with fight-or-flight responses, such

as fear and stress. GSR is then characterized into two types of changes — tonic skin conductance level

and phasic skin conductance response, each characterizing slowly varying levels of skin conductivity over

time without any particular interference from external stimuli and rapid variations in conductance under

the e↵ect of some external factor, with peaks referred to as skin conductance responses (SCRs). Thus,

our GSR features would be more informative for understanding the tonic changes as they are averaged

over a time window greater than 25 seconds, while peaks per second, mean amplitude, and mean rise

time may carry some information regarding phasic changes as well.

Blood volume pulse – BVP

The BVP is measured with the photoplethysmography (PPG) and measures changes in blood vol-

ume. It is closely related to the interbeat interval (IBI), which measures the time distances between two

consecutive heartbeats. Our BVP features measure various characteristics of this signal: mean IBI and

the heart rate variability as a standard deviation of IBI, multiscale entropy at 5 levels, tachogram power

at low frequencies (LF : f 2 [0.01, 0.08]Hz), middle frequencies (MF : f 2 [0.08, 0.15]Hz), high frequen-
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cies (HF : f 2 [0.15, 0.4]Hz), and the ratio between the power of medium to low plus high frequencies,

and PSD at four frequency bands of f 2 {[0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4]}Hz, and the ratio between

low to high frequencies with LF between [0.08, 0.15]Hz and HF between [0.15, 0.4]Hz.

Electrocardiogram – ECG

In the K-EmoCon dataset, ECG is equivalent to beats per minute (BPM), and its statistical moments

(mean and SD) are used as features.

Human skin temperature – HST

HST is as straightforward as a measure of skin temperature in degrees Celsius. Its PSD are extracted

as features similar to BVP, for frequencies in f 2 {[0, 0.1], [0.1, 0.2]}Hz, along with statistical moments

including mean, standard deviation, kurtosis, and skew.

3.2.2 Deep networks for physiology-based emotion recognition

One major di↵erence and advantage of deep neural networks compared to traditional machine learn-

ing models is that they allow bypassing feature extraction steps. It is a well-established knowledge that

deep networks themselves are automatic feature extractors, i.e., representation learners [10]. For ex-

ample, convolution neural networks (CNNs) are known to learn simple shapes such as lines and curves

in the lower layers and more complex shapes resembling real-world objects in the upper layers [152].

Autoencoders [57] are another example where the feature extraction capability of a DNN is utilized to

a full extent. Autoencoders learn to reduce raw data in a higher dimension to a simpler latent vector

in a lower dimension by repeating the encoding-decoding process. Also, in natural language processing

(NLP), with su�cient data and carefully designed algorithms, human e↵ort in engineering meanings to

words to help machines understand human language can be minimized [26, 92].

This notion of using deep networks as automatic extractors of characteristics and relationships

embedded in raw data similarly extends to physiological signals [86]. Given that, this work also explores

modeling emotions manifested via human physiology with deep neural networks. We utilize a recurrent

neural network (RNN) [118] known for its ability to learn long-term dependencies from a sequence of

inputs changing over time, such as human languages, as physiological signals are also 1-dimensional

temporal sequences. In particular, we use a popular variant of RNN, a long short-term memory (LSTM)

network [58], which is robust against the vanishing gradient problem in traditional RNNs.

We apply minimal preprocessing to physiological signals to prepare K-EmoCon raw data as inputs

to a deep neural network. As the sampling rates di↵er across physiological signals, we first resample

BVP and ECG to match their sampling rates to EDA and HST collected at 4Hz.

As shown in figure 3.4, BVP is downsampled from 64Hz to 4Hz, and ECG is upsampled from

1Hz to 4Hz. The decimation function in the SciPy package with a downsampling factor of 16 is used

for downsampling BVP, and a quadratic 1-D interpolation function in the same package is used for

upsampling ECG. Both functions were chosen heuristically after visually inspecting the shape of resulting

signals from di↵erent sampling methods. After resampling, four 1-dimensional signals are stacked to form

a 2-dimensional array of shape 4⇥ 20 corresponding to a 5-second segment of physiological data.
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(a) Downsampling BVP (b) Upsampling ECG

Figure 3.4: Resampling BVP (64Hz) and ECG (1Hz) to 4Hz to match lengths of physiological signals as

inputs to an LSTM network.

3.3 Experiment Setup

This section discusses the formalization of emotion recognition using the K-EmoCon dataset as

a binary classification problem. Online active learning algorithms for adaptive sampling of emotions

in a naturalistic setting and our approach in combining uncertainty sampling and minority sampling

strategies into a single parametric query function to enable selective sampling of emotions are proposed.

Finally, we discuss how we will evaluate our proposed adaptive sampling method for emotions.

Figure 3.5: The distribution of self-reported arousal and valence labels in the K-EmoCon dataset.
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3.3.1 Binary classification of emotions

Emotion recognition in this work is formulated as a binary classification problem between low and

high classes, respectively, for two dimensions of arousal and valence. While arousal and valence were

both measured on the 5-point Likert scale during the dataset’s construction, low and high classes are

defined separately for two emotion vectors. For arousal, low class corresponds to {1, 2, 3} including

neutral (=3) and high class to {4, 5}, while low class includes {1, 2} and high class {3, 4, 5} for valence.

This choice is to avoid conflating negative emotions with a neutral state.

As in figure 3.5, the self-reports of arousal and valence in the K-EmoCon dataset are centered

around neutral with a slight bias towards the positive side. This is unsurprising as negative emotions

in the wild are reported less frequently compared to positive emotions. While people default to a

neutral state in general, social desirability bias [20] and people’s positive reappraisal of past events as

a coping mechanism [27, 79] contribute to the imbalance in the distribution of self-reported emotions.

Nonetheless, correct recognition of negative emotions intuitively has more pressing implications than

recognizing positive emotions as they can signal potential mental illness or social conflicts. Given that,

in this work, the neutral state is grouped with low arousal (LA) and high valence (HV), to make high

arousal (HA) and low valence (LV) states associated with negative emotions more pronounced.

3.3.2 Query strategy for active learning

In the following, an instance in the dataset K is a pair (xi, yi), where xi is an input segment of

physiological signals of varying length, starting from the minimum of 5 seconds, and yi is a corresponding

emotion label for either valence or arousal, which takes on the values {0, 1}, representing low or high.

An active learner is then assumed to be constructed upon a classification model !i = f(x; ✓). A

model, defined by parameters ✓, takes an input xi in a set X of size M and returns !i in a model’s

sample space ⌦ of size N with M  N . A model output !i is a single value representing the distance of

the input xi from a classification hyperplane. A value of !i below zero indicates that a model predicts

xi as low, and vice versa for a value above zero, while a large absolute value of !i signals that a model

has high confidence in its prediction. To convert this !i into a binary prediction for emotion label ŷi, we

define a classify function that takes !i as an input and returns a predicted class label ŷi associated

with an input xi:

ŷi = classify(!i) =

8
>>><

>>>:

0 if !i < 0

1 else if !i > 0

⇠ Bernoulli(0.5) otherwise !i = 0

(3.1)

Note that when !i equals zero, a model is uncertain of its prediction, and the given input is equally

likely to be classified as low or high. Therefore, we require a model to query the associated label on

such occasions and use the newly acquired information in future predictions. This behavior is a defining

characteristic of an active learner. For the rest of the paper, a “learner” and a “model” all refer to

an active learner capable of actively querying and learning incrementally, and we will use the terms

interchangeably.
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(a) Confidence (b) Uncertainty

Figure 3.6: Query probability functions for uncertainty sampling.

Uncertainty sampling

The approach of querying for examples that a learner is least sure about is uncertainty sampling.

Specifically, we employ a logistic margin sampling, which was previously used in activity recognition [2,

93] and spam mail filtering [127]. For logistic margin sampling, we first compute the confidence of a

learner pconf given an input xi using a sigmoid function, then use pconf to obtain the probability qu that

a learner would query for the emotion label yi associated with the input:

pconf : R! [0.5, 1] : !i, � 7!
1

1 + e��|!i|
(3.2)

and

qu : R! [0, 1] : pconf 7!
1

pconf
� 1 (3.3)

Here, pconf is a probability that a learner expects the predicted label ŷi to match the ground truth.

Of course, as pconf = e
��|!i|, it is possible to bypass calculating pconf and directly get qu. An absolute

value is taken for !i as pconf can represent a learner’s confidence in both negative and positive directions;

thus, a learner is least confident when pconf equals 0.5, meaning that a learner is only confident as much

as a random classifier. The additional parameter �, which can be any non-negative number including

zero, then controls a learner’s behavior, such that a learner is more confident in its prediction with a

higher �.

As in figure 3.6a, while pconf always equals 0.5 when !i = 0, pconf gets higher for greater values of

� while !i stays the same. This can be interpreted as that a learner is more selective in its queries with

higher � values. Figure 3.6b shows plots of qu at di↵erent values of �. Like pconf, a learner will always

query with qu = 1 at !i, but at other values of !i, a learner will increasingly query only for instances it

finds near the hyperplane as � increases.

Minority sampling

Another query strategy in active learning is minority sampling [82], where a learner actively queries

labels for inputs that it expects to belong to a minority class. This concept has not been explored to the

extent of uncertainty sampling in the literature. However, the idea is similarly introduced in other works

as diversity sampling [130], where the sample space is divided into groups such that instances in a group
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(a) Query probability at di↵erent values of � (b) Query probability at varying levels of ↵ and �

Figure 3.7: Query probability functions for paremeterized uncertainty-minority sampling.

are similar to each other than instances in other groups, and instances are evenly sampled from each

group. This strategy aims to make the distribution of the dataset resulting from data collection balanced

and a resulting model to make better predictions/classifications for samples that belong to the minority

class. This strategy is appropriate in our scenario of collecting emotions in the wild, as the distribution

of naturally occurring emotions is biased towards positive, while the recognition of negative emotions is

often more critical in applications based on emotion recognition such as depression prognosis.

With the assumption minority class label = 0, minority oversampling for an active learner can be

defined as a simple conditional function:

qm =

8
<

:
0 if classify(!i) = 1

1 else if classify(!i) = 0
(3.4)

Note that the minority class label can change as an active learner accumulates more samples through-

out training, and the distribution of the collected samples changes. In that case, a learner should update

what it considers as a minority class. However, there can be a problem if the distribution of the samples

queried during the learning process and the distribution samples to be predicted di↵er significantly, as

then a learner would be overfitting to the training data and fail to estimate the target distribution,

rendering itself useless in realistic scenarios.

Parameterized uncertainty-minority sampling

To overcome the limitations of only emphasizing minority samples, we can combine the previous

two query strategies into a single strategy, a parameterized uncertainty-minority sampling, and take

advantage of both the uncertainty and minority sampling. The proposed sampling strategy is as follows:

query(!i) = Bernoulli(↵ · qu(!i) + � · qm(!i))

for ↵+ � = 1 and 0  ↵,�  1
(3.5)

This query function, parameterized with three parameters ↵, �, and �, and taking a model output

!i as an input, returns a value between 0 and 1, which is the probability a learner would query for the

label associated with the input, mapping model outputs !i to query probabilities.

While � controls a learner’s selectivity, as in figure 3.7a, ↵ and � control the respective influence of

uncertainty sampling (↵) and minority oversampling (�) in decisions to query or not. Figure 3.7b shows
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as ↵ trades o↵ with �, i.e., more weight is put on querying samples a learner is uncertain with than

querying minorities, the shape of the query function approaches the shape of the uncertainty sampling

query function as in figure 3.6b.

3.3.3 Online active learning

Two major learning scenarios in the active learning framework are pool-based active learning and

stream-based selective sampling (or stream-based active learning). This work focuses on stream-based

active learning, assuming the online learning [129] setting where a model decides to query or discard

items from some stream of input sources one by one and learns on the fly.

Single-pass stream-based active learning

In particular, we define a sequence of steps where active learning occurs given a dataset consisting

of inputs and associated labels as single-pass stream-based active learning. Algorithm 1 illustrates the

proposed approach.

Algorithm 1: Single-pass Stream-based Active Learning

Data: K ✓ RN⇥D

Input: init size, test size, update size, learning rate: ⌘, query params: {↵, �, �}
1 initialize by splitting the dataset K into:

1. initial train set R = (XR, YR),

2. test set T = (XT , YT ),

3. data stream S = (XS , YS),

such that |R| = init size, |T | = test size, and |S| = N � init size� test size;

2 initialize the active learner f✓ : X ! Y , w/ random parameters ✓;

3 fit f✓ to R, with the update rule ✓  ✓ � ⌘rL(f✓(XR), YR);

4 initialize the query bu↵er Q [;];
5 for x

(i)
S 2 S, where i = 1, 2, ..., |S| do

6 get !i = f✓(x
(i)
S );

7 if query(!i) then

8 update Q Q+ (x(i)
S , y

(i)
S );

9 end

10 if |Q| � update size then

11 update R, where XR  XR +XQ and YR  YR + YQ;

12 incrementally fit f✓ to R, with ✓  ✓ � ⌘rL(f✓(XR), YR);

13 test updated model model f✓ with T ;

14 empty query bu↵er Q [;];
15 end

16 end

17 test the final model f✓ with T ;

The decision to query or not is made only once for each sample in this algorithm. This single-pass

approach is particularly appropriate in the context of sampling emotions in the wild, where emotions

in retrospect are subject to numerous biases [5], including memory/recall bias and self-report biases.
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Note that although the decision is made only once for each sample, samples are used multiple times for

updating parameters during the training process.

Model coverage

However, a limitation in this approach is that it cannot control the coverage of a learner, i.e., how

much of the total data should an active learner query. To compensate for this issue, we refine algorithm 1

by modifying the query decision rule to consider the model’s coverage. For that, we define an empirical

coverage �m [49] as the following, with |R| denoting the size of the initial training batch:

�m =
|R|+

Pm
i=1 query(!i)

|R|+m
(3.6)

Algorithm 2: Single-pass Stream-based Active Learning with Coverage

Data: K ✓ RN⇥D

Input: init size, test size, update size, learning rate: ⌘, query params: {↵, �, �},
target coverage: �⇤

1 initialize by splitting the dataset K into:

1. initial train set R = (XR, YR),

2. test set T = (XT , YT ),

3. data stream S = (XS , YS),

such that |R| = init size, |T | = test size, and |S| = N � init size� test size;

2 initialize the active learner f✓ : X ! Y , w/ random parameters ✓;

3 fit f✓ to R, with the update rule: ✓  ✓ � ⌘rL(f✓(XR), YR);

4 initialize coverage: �m  1, # queried samples: m |R|, and the query bu↵er: Q [;];
5 for x

(i)
S 2 S, where i = 1, 2, ..., |S| do

6 get !i = f✓(x
(i)
S );

7 if �m < �
⇤ or query(!i) then

8 update Q Q+ (x(i)
S , y

(i)
S );

9 increment m m+ 1;

10 end

11 update �m  m
init size+i ;

12 if |Q| � update size then

13 update R, where XR  XR +XQ and YR  YR + YQ;

14 incrementally fit f✓ to R, with ✓  ✓ � ⌘rL(f✓(XR), YR);

15 test updated model model f✓ with T ;

16 empty query bu↵er Q [;];
17 end

18 end

19 test the final model f✓ with T ;

By definition, �m is the ratio of samples in a full dataset a learner has labels for at a given point in

time when m samples from a stream have been inspected for querying. If this value is below a threshold,

we may tweak a learner’s behavior to query more samples. While there can be di↵erent approaches,

we use a heuristic where a learner queries all samples that it encounters when its coverage is below a

threshold, otherwise queries using the probabilistic query function discussed above.
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While giving an active learner control over how much data it queries, this approach can also benefit

incremental learning by mitigating a model’s instability during the early learning phase. Similar to

the cold start problem in recommender systems [80], an active learner may fail to make su�cient or

appropriate query requests if it is overfitting to the initial training batch that contains samples disparate

from the rest of the dataset. In this case, a learner would make misguided decisions when it encounters

new samples. However, with this coverage-based approach, a learner gets to access a portion of data

that is at least larger than what is specified by the target coverage. Although the representativeness of

samples in the initial batch is still out of control, increasing the dataset size is well known as one of the

regularization techniques in machine learning.

3.3.4 Evaluation metrics for imbalanced data

For the evaluation of classification models’ performance with imbalanced test data, we use un-

weighted accuracy as a base metric and two additional metrics of weighted F1 score and weighted

AUROC, the area under the receiver operating characteristic (ROC) curve [43].

F1 score is a metric combining precision = TP
TP+FP and recall = TP

TP+FN into one with the harmonic

mean is calculated as follows:

F1 =
precision · recall
precision + recall

(3.7)

While F1 score is appropriate for binary classification problems, it prioritizes the positive class, thus

we use AUROC as another evaluation metric.

AUROC is the area under the ROC curve showing the tradeo↵ between true positive rate (TPR =
TP

TP+FN , i.e., recall) and false positive rate(TPR = TP
TP+FN ). The ROC curve is also useful as it allows

comparing models with a random classifier. While it is suggested that the precision-recall plot is better

than the ROC plot for evaluating binary classification with an imbalanced dataset [123], we opt for

AUROC as we would like to have a metric that puts equal importance to positive and negative classes.
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Table 4.1: The baseline classification results for arousal and valence with XGBoost at varying window

sizes.

Arousal Valence

Metrics Acc. F1 AUROC Acc. F1 AUROC

25s 0.840 0.836 0.883 0.849 0.831 0.876

30s 0.807 0.801 0.910 0.811 0.786 0.895

35s 0.837 0.836 0.901 0.851 0.835 0.916

40s 0.858 0.855 0.923 0.866 0.956 0.935

45s 0.894 0.893 0.936 0.892 0.890 0.931

50s 0.879 0.877 0.955 0.945 0.943 0.980

55s 0.906 0.904 0.957 0.917 0.914 0.944

60s 0.919 0.918 0.958 0.911 0.908 0.965

Chapter 4. Experiments and Results

This chapter discusses how we conduct experiments to empirically evaluate our proposed active learning

approaches for the adaptive sampling of emotions in the wild. In particular, we focus on answering the

following questions:

• How does the model’s selectivity (�) a↵ect the performance of an active learner and the size and

label distribution of the resulting dataset?

• How does controlling for ↵ and � of the parameterized query function a↵ect the model performance

and the resulting dataset?

4.1 Baseline Classification

As discussed in chapter 3, we formulate emotion recognition as a binary classification problem

between low/high classes for arousal and valence. However, as the K-EmoCon is a recently published

dataset without any previously reported machine learning models trained and evaluated with the dataset,

we first train base classification models with K-EmoCon and demonstrate that the K-EmoCon is appli-

cable to classification tasks. We use an XGBoost [24] and an LSTM network for this task, and models

are trained separately to predict arousal and valence. Note that we perform holdout cross-validation to

evaluate classifiers.

4.1.1 XGBoost

XGBoost is an algorithm based on gradient boosting [47], an ensemble technique where many weak

learners are trained additively to form a single robust learner. Each new learner is built greedily upon

the residuals of prior learners until no additional improvements are possible. This algorithm applies to

both decision trees and linear regressors, and many competitions and research projects employed the

algorithm recently for its speed, flexibility, and scalability.
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(a) Arousal (b) Valence

Figure 4.1: Confusion matrices for the baseline classification with XGBoost.

In the following, we use a tree-based XGBoost classifier for both arousal and valence. A classifier

is trained at the learning rate of 0.3 with a maximum depth of six for 100 boosting iterations. A total

of 30 features extracted from a segment of physiological signals corresponding to the minimum of 25

seconds up to 60 seconds during a debate, containing BVP, EDA, ECG, and HST, are provided as inputs

to the classifier. Associated low and high labels are defined separately for arousal and valence, with LA

corresponding to {1, 2, 3} including neutral (=3) and HA to {4, 5}, while LV = {1, 2} and HV = {3,
4, 5}. Note that labels for the last 5 seconds in the segments are used as labels for the entire segment.

Table 4.1 summarizes the classification results for arousal and valence using an XGBoost with features

extracted from varying length of segments from 25 seconds to 60 seconds.

4.1.2 LSTM

As discussed earlier in section 3.2.2, we also employ LSTM networks for the binary classification

of arousal and valence, to verify that K-EmoCon is also usable with deep learning models. We train a

2-layered bidirectional LSTM network with 20 hidden units and a dropout probability of 0.2 between

layers, while halting the training early if validation loss does not improve for 500 epochs. For all runs, we

use a learning rate of 8.5⇥10�4. Inputs to the network are resampled BVP, EDA, ECG, and HST signals

at 4Hz, which are stacked into 2-D arrays of shape 4 by 4 times the length of segments in seconds, i.e.,

25s of physiological signals form an input of size D = 4 by 100, and 4 by 120 from 30 seconds signals, and

onward. Arousal and valence labels are defined the same as how we defined them for XGBoost models.

Table 4.2 and figure 4.2 shows the results of baseline classification with LSTM networks.

4.2 Simulated Stream-based Active Learning

Given that the K-EmoCon dataset supports classification with both traditional ML models and deep

neural networks, we conduct active learning experiments by simulating an online learning scenario with

the dataset. In this scenario, the dataset is divided into three parts: 1) initial batch, 2) data stream

and 3) test set. An initial batch is for training an initial model that determines whether to query or

not for each sample from the data stream. As its name suggests, a data stream simulates a hypothetical
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Table 4.2: The baseline classification results for arousal and valence with LSTM at varying input sizes.

Arousal Valence

Metrics Acc. F1 AUROC Acc. F1 AUROC

25s 0.699 0.694 0.757 0.823 0.820 0.788

30s 0.701 0.692 0.737 0.805 0.797 0.836

35s 0.757 0.748 0.804 0.852 0.845 0.822

40s 0.791 0.790 0.828 0.818 0.815 0.814

45s 0.817 0.814 0.854 0.882 0.884 0.903

50s 0.852 0.854 0.899 0.902 0.903 0.874

55s 0.771 0.766 0.843 0.885 0.885 0.896

60s 0.882 0.865 0.936 0.917 0.916 0.942

(a) Arousal confusion matrix (b) Valence confusion matrix

(c) Arousal train/validation losses (d) Valence train/validation losses

Figure 4.2: Confusion matrices and train/validation losses for the baseline classification with LSTM.

data source that sequentially generates samples for online learning. Upon receiving a sample, a model

inspects it and retrieves an associate label if deemed suitable for querying, and saves (sample, label) to

a queried samples bu↵er. A model is updated when the query bu↵er reaches a predetermined size (e.g.,

1% of the full dataset), and the intermediate model’s performance is evaluated with the test set. This
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process continues until there are no more samples left in the data stream.

4.2.1 Query selectivity and model performance

We first observe the e↵ect of the model’s selectivity controlled by the � parameter on the classification

performance. As discussed in section 3.3.2, � a↵ects how the model queries for samples that it finds

uncertain in classification. With higher �, the model will increasingly query for samples that it finds

nearer to the hyperplane, and for the same sample, a model will be less likely to query for a label.

To observe how this parameter a↵ects a model’s performance, we compare the performance of

XGBoost classifiers trained at di↵erent levels of � while holding everything else the same (↵ and � are

both set to 0.5), using the single-pass active learning (algorithm 1) where models are trained incrementally

without the target coverage. Figure 4.3 summarizes the results of this experiment:

(a) Arousal (b) Valence

Figure 4.3: Learning trajectories of XGBoost-based active learners without target coverage and 60s input

features.

Unsurprisingly, the resulting dataset’s size is larger at lower � values; the more data is accumulated

overall, the less discriminating a model is in queries. As one can expect, this larger pool of training

samples leads to higher model performance for arousal classification. However, this generally accepted

tendency between the size of training data and model performance is reversed for valence.

For valence, model performance is the lowest when the � value is the smallest (� = 0.1). This result

may, in part, be due to the severe imbalance in valence labels. The positive to the negative ratio for

valence is 1357 : 444 = 1 : 0.327, while arousal is also imbalanced but not as much as valence with the

positive to negative ratio of 1346 : 771 = 1 : 0.573. Given that, we can interpret this result as a low

selectivity can benefit the model by allowing the accumulation of a larger set of training samples that,

in turn, provides a regularization e↵ect. However, indiscriminate querying can be harmful when the

sample distribution is highly biased, and especially when a model is unstable during an early stage of

training as it su↵ers from a cold start. Putting this into parallel, imagine an average student learning to

solve math problems from a book that contains some highly challenging, college-level problems (negative

samples) and many relatively simple problems at his level (positive samples). If the student were to

practice solving problems from this book to be tested later, how can he score higher, practice problems at

random throughout the book, or focus on practicing ones among simpler problems that he can somewhat

understand but unsure how to solve?

Nonetheless, the e↵ect of � on model performance is diminished when the target coverage is set.
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(a) Arousal: input size = 25s (b) Valence: input size = 25s

(c) Arousal: input size = 60s (d) Valence: input size = 60s

Figure 4.4: Learning trajectories of XGBoost-based active learners with target coverage = 60%.

Figure 4.4 shows the result of an experiment where we similarly train XGBoost classifiers for arousal

and valence using the single-pass method but using algorithm 2 with the target coverage, which controls

the minimum amount of data a model should query. The results show that when the target coverage is

set to 60% of the full dataset, while models’ performances improve with more training samples, the �

parameter becomes relatively meaningless. Although there are slight di↵erences in each model’s learning

trajectory, the di↵erences are not significant enough.

One thing we may note, however, is that training with low � tends to result in better model

performance in the long run, based on our empirical observation. This may be specific to the context of

emotion recognition, which usually concerns physiological signals collected from individuals with distinct

physiology and involves datasets relatively small in size compared to other problems such as activity

recognition, where data is abundant and easy to collect. Given these characteristics of scarce and

heterogeneous data, the optimum strategy in learning emotions from physiological data might be to

take as many chances of exploration whenever possible instead of relying on dubious estimates patched

together from a handful of evidence, similar to the notion of exploration and exploitation in reinforcement

learning [139].

4.2.2 Tradeo↵ between uncertainty and minority sampling

In this section, we observe the tradeo↵ between uncertainty sampling and minority sampling in their

e↵ect on model performance. Uncertainty sampling in active learning aims to query instances closest
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to the decision boundary, which a model is least confident about, and are also the most informative

instances likely to cause the most considerable change in the model. Minority sampling, on the other

hand, is as straightforward as querying instances that are expected to belong to a minority class, while

the definition of the minority group is updated as learning progresses and the distribution of training

samples change.

To combine two sampling strategies, we use a parameterized query function defined as query(!i) =

Bernoulli(↵·qu(!i)+� ·qm(!i)) discussed earlier in section 3.3.2. In this function, ↵ and � are parameters

determining the weights to uncertainty and minority sampling, respectively, softly constrained such that

they sum to one and are both in the range [0, 1]. Using ↵ and �, we experiment with how controlling

them a↵ects model performance and the data collection.

(a) Arousal (b) Valence

Figure 4.5: Learning trajectories of XGBoost-based active learners at varying levels of ↵ and �, with

� = 1 and �
⇤ = 0.6.

First, we observe how di↵erent ↵ and � levels a↵ect the performance, while we constrain the model’s

selectivity to � = 1 and collect at least 60% of the total data by setting the target coverage. The results in

figure 4.5 show that the classification performance for both arousal and valence is the lowest for ↵ = 0.9

and � = 0.1, i.e., when a larger weight is put on uncertainty sampling than minority sampling. However,

a di↵erent picture is painted when classifiers are trained at a lower � without target coverage.

(a) Arousal (b) Valence

Figure 4.6: Learning trajectories of XGBoost-based active learners at varying levels of ↵ and �, with

� = 0.1 and no target coverage.
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As in figure 4.6, without target coverage and � set to 0.1, ↵ = 0.9 and � = 0.1 resulted in the best

classification performances. Results of these two experiments together point to the conclusion that more

exploration can benefit the incremental learning of an active learner in the physiology-based emotion

recognition scenario.

With a target coverage set, a model queries all samples from the stream when the model coverage

is below the threshold. If its coverage is over the threshold, then the model decides to query or not

following a query function that resembles a step function where y = 1 for all x less than or equal to 0,

y = 0 for all x above 0 (see Fig. 3.7b). Given such a shape of the query function, the model can have

more room for exploration with a higher weight on minority sampling than uncertainty sampling. In

contrast, without target coverage, a model’s final performance is higher with more weights on uncertainty

sampling. This can be attributed to the underlying distribution of the K-EmoCon dataset, which is not

in favor of minority sampling. As the dataset is inherently imbalanced, it is natural that a model learning

from such data more often predicts that a sample belongs to a majority class than a minority class; more

queries are likely to be issued with uncertainty sampling than minority sampling when a model is less

prone to predict that some sample belongs to a minority group. Thus, the model with a high ↵ will have

more chances to explore the sample space with more queries and benefit from the larger pool of training

samples, which leads to better model performance.

4.2.3 Rebuilding models per updates

The final performance of active learners so far was subpar to baseline classifiers’ performance trained

with the full data. Nonetheless, this shortcoming of active learners can be easily overcome by rebuilding

the models from scratch after each update of training samples instead of incrementally training existing

models.

In this approach, after newly queried samples are added to the existing training set, a new randomly

initialized model is trained with the updated train set and replaces the existing model to continue the

learning process. Active learning models resulting via this approach show performance comparable to

models trained with the full dataset only using 60% of the entire dataset. This result as shown in

figure 4.7 suggests that a model can learn better during the online learning process with an artificially

induced catastrophic forgetting. Intuitively, this makes sense if we consider our dataset is small, and

early models trained from an even smaller portion of the entire dataset is unlikely to have acquired

knowledge that is meaningful or will be relevant in making predictions later in the learning process

when the amount of training data has substantially increased. So that, forgetting all previously acquired

information and starting anew allows an active learner to escape the local minima the earlier model was

optimized for and continue learning without being misguided by the wrong knowledge.

This approach will be inapplicable when it comes to larger datasets, especially with deep neural

networks. In this case, the model may acquire critical information during the early stages of learning,

and being unable to build upon this knowledge may impede the learning process. Of course, once the

model could discover the knowledge, then it could rediscover what it forgot, as our XGBoost models did,

but this can be challenging when the amount of the data the model has to learn from is significantly

larger. Also, for large models trained with sizable data, rebuilding will be simply too ine�cient or even

impossible when the full data cannot be accessed due to the limited memory.
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(a) Arousal: ↵,� = 0.5, no target coverage (b) Valence: ↵,� = 0.5, no target coverage

(c) Arousal: � = 1, �⇤
= 0.6 (d) Valence: � = 1, �⇤

= 0.6

Figure 4.7: Learning trajectories of XGBoost-based active learners with model rebuilds after each update.
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4.2.4 Deep active learning

We also test the viability of active learning with DNNs using LSTM networks. An LSTM network

architecture for active learning is the same as the baseline LSTM discussed in section 4.1.2, a bidirectional

LSTM with 20 hidden nodes and two layers with a dropout probability of 0.2 between layers. Active

learning with an LSTM follows the single-pass stream-based active learning algorithm’s steps discussed

in section 3.3.3, but with a slight modification. A portion of the training samples (e.g., 20%) is reserved

for the validation step to halt the training early if the learning stagnates for a certain number of epochs,

and two di↵erent learning rates are used for initial batch training and incremental updates.

(a) initial LR, update LR = 1⇥ 10
�5

(b) initial LR = 1⇥ 10
�5

, update LR = 9⇥ 10
�5

Figure 4.8: Train and validation losses of LSTM-based active learners for arousal classification.

This attempt to apply active learning to an LSTM network nonetheless results in unsuccessful

training with models’ loss functions failing to converge. Past the initial phase where the training happens

rather steadily using a learning rate of 1⇥ 10�5, the training quickly destabilizes as the model starts to

learn incrementally and fails to acquire any new meaningful information until the training terminates

after seeing all samples from the steam. Although it is possible to achieve some incremental learning past

the initial training by fine-tuning the second learning rate, the model again soon stops learning when

new samples are added. Similar to what we observed while training XGBoost-based active learners,

these models were likely incapable of escaping from the local optimum they learned during the initial

training and continued to fail to extract new knowledge from queried samples as they are only so many

compared to the existing training samples. A continual adjustment of learning rate in the update phase

or applying heavier weights to newly queried samples may allow the model to learn new information and

correctly incorporate that into its future inferences without forgetting previously acquired information,

but that would likely warrant an entirely new approach altogether.
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Chapter 5. Discussion: Limitations and Future Works

This work points to that an adaptive sampling approach based on stream-based active learning could

significantly reduce data collection down to 60% while reaching a comparable performance to using the

full dataset in binary emotion recognition task for arousal and valence. This result, in turn, suggests that

an adaptive ESM can decrease user burden in the process of emotion data collection to result in improved

data quality and the balanced distribution of emotions in the resulting dataset. Our results also provide

an insight that guaranteeing an active learning model space for exploration during the early stage of

learning can lead to better classification performance, given the imbalanced distribution of training data

and the small size of the dataset. Nevertheless, our work is not without limitations and can be further

refined in several aspects, including the following:

Stopping criterion for active learning It is apparent from the empirical observation of multiple

rounds of training active learners that the training can benefit from a stopping criterion, even when the

target coverage is set for a model. This is di↵erent from the early stopping used for the training of LSTM

models, as it seeks to halt the additional data collection from the data stream if the expected benefit

from further querying is below a certain threshold. This idea was similarly explored with Conditional

Mutual Information (CMI) in a work that applied active learning to activity recognition [2].

Learnable query function The query function parameters ↵, �, and � were set manually during

our experiments, but not only the model performance but the e�ciency of data collection could be

improved if the parameters could be learned through iterative update similar to how the model’s internal

parameters are updated. Our current implementation of active learning does not support the automated

tuning of query parameters as learnable values, but future works should explore this possibility.

Limited ecological validity The ecological validity of the experimental findings is limited as we

performed the hold-out evaluation of active learners. While our findings are still applicable assuming a

scenario involving a centralized inference module that accumulates data from multiple users to determine

which instances to query, personalized emotion recognition models and leave-one-subject-out (LOSO)

evaluation would be necessary to apply adaptive sampling in a more realistic scenario involving multiple

users and edge devices.

The formulation of emotion recognition as a binary classification problem also limits this work’s

ecological validity as emotions in the wild cannot be captured in mere two-dimensions as noted in previous

work on the theory of emotions (see section 2.1). The division of emotions into two categories of low vs.

high was employed to enable streamlined active learning experiments to empirically observe its validity

for sampling emotions in realistic scenarios, together with more interpretable results. Nonetheless, this

artificial divide limits the observation of natural variances present in the original 5-scale measurement

of emotions, which is likely still too limited to observe emotions in their most natural forms.

Therefore, future works may utilize more fine-grained categories of emotions for the higher ecological

validity of a model, but possibly altogether invent an embedding space of emotions, similar to the

Word2Vec technique for embedding natural languages to a multi-dimensional vector space [92]. Such an

embedding technique could map emotional states and expressions captured with unimodal or multimodal
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a↵ective data to space where the contexts those emotions occurred are archived linguistically or in any

other means of observing and documenting emotions externally.

Need for ESM specific dataset While the adaptive sampling method explored in this work assumes

data collection via ESM in studies lasting several days to possibly months, the K-EmoCon dataset is

collected in the 10-minute debate scenario, with participants annotating their emotions during a debate

in one sitting. Such artificially of the data collection setup for K-EmoCon limits the extensibility of

the dataset and the results of this work to realistic ESM scenarios. Given that, validating whether the

observed results of this work hold in experiments with other datasets of emotion data collected in the

context of longitudinal ESM would be necessary.

Potential signal aliasing While BVP and ECG signals were resampled to 4Hz from 64Hz and 1Hz

respectively, this choice of 4Hz as a resampling frequency is a heuristic one, and does not imply the

sampling frequency of the true signal, following the Nyquist–Shannon sampling theorem, should be 2Hz.

Conversely, a substantially higher frequency is likely to capture a↵ective information in physiological

signals fully, but such high-frequency data collection is currently unavailable for commercial-grade mobile

wearable sensing devices. However, as a workaround, we could utilize a data fusion strategy or an

architecture that omits the need to resample to instead use an educated process to combine data from

multiple modalities [25].

Refined deep active learning Although our attempt to actively train a deep neural network was

unsuccessful, deep active learning is an active area of research, and adopting a more sophisticated method-

ology to train a deep network via active learning might succeed as other researchers have demonstrated

it [122]. For example, active one-shot learning combining ideas from few-shot learning and reinforcement

learning was used to recognize handwritten characters [148], and this methodology could be similarly

applied for the emotion recognition task. Investigating the application of meta-learning techniques is also

a reasonable option assuming the small size of the dataset [44, 98]. We could also consider di↵erent query

strategies for active learning, such as the query by committee (QBC), if we assume that the active learning

occurs in the multi-user & multi-device environment with one active learner per user. Finally, modifying

the loss function directly for active learning [49, 151, 155] and the base network architecture [55, 150]

are viable options, given our current choice of binary cross-entropy and a simple LSTM network may

have been insu�cient for the learning of meaningful representation from physiological signals.
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Chapter 6. Conclusion

While ESM is widely employed for research on emotions in the wild, randomly triggered ESM question-

naires can cause interruptions and increase the user burden leading to attrition. The inherently imbal-

anced distribution of emotions in the wild also a↵ects the data quality and emotion recognition models’

performance trained with such data. This work investigated the potential of using active learning-based

adaptive sampling methods to collect emotions in a hypothetical data collection scenario simulated with

the K-EmoCon dataset.

We implemented the stream-based single-pass active learning algorithm and trained XGBoost and

LSTM-based emotion recognition models for binary classification of arousal and valence with a 60-second

segment of physiological signals, including BVP, ECG, EDA, and HST. We conducted experiments to

test how di↵erent configurations of an active learning algorithm a↵ect the learning process and the

final model performance with the parameterized query function, which enables controlling the model’s

selectivity, minimum coverage, and weights to sampling strategies.

The results showed that active learning could reduce data collection down to 60% without signifi-

cantly sacrificing the model performance, particularly if a base model is rebuilt after each training set

update. We also empirically observed allowing exploration during the early training of an active learner

can benefit its incremental learning, while careless exploration can also be harmful if the data distribu-

tion is severely imbalanced. Although we were not successful in our deep active learning with an LSTM

network, findings from few-shot learning and reinforcement learning research should be further explored.

Finally, future works should consider validating the findings of this work using a dataset constructed with

a longitudinal scenario of collecting emotions in the wild with ESM and employ an evaluation strategy

suitable for the realistic scenario involving multiple users and devices to allow the generalization of the

adaptive sampling method for naturalistic emotions to real-world applications.
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[27] D. Colombo, C. Suso-Ribera, J. Fernández-Álvarez, P. Cipresso, A. Garcia-Palacios, G. Riva,

and C. Botella, “A↵ect recall bias: Being resilient by distorting reality,” Cognitive Therapy and

Research, pp. 1–13, 2020.

[28] L. Constantine and H. Hajj, “A survey of ground-truth in emotion data annotation,” in 2012 IEEE

International Conference on Pervasive Computing and Communications Workshops, IEEE, 2012,

pp. 697–702.

[29] D. T. Cordaro, R. Sun, D. Keltner, S. Kamble, N. Huddar, and G. McNeil, “Universals and

cultural variations in 22 emotional expressions across five cultures.,” Emotion, vol. 18, no. 1,

p. 75, 2018.

[30] J. A. M. Correa, M. K. Abadi, N. Sebe, and I. Patras, “Amigos: A dataset for a↵ect, personality

and mood research on individuals and groups,” IEEE Transactions on A↵ective Computing, 2018.

doi: https://doi.org/10.1109/TAFFC.2018.2884461.

33



[31] A. Cowen, D. Sauter, J. L. Tracy, and D. Keltner, “Mapping the passions: Toward a high-

dimensional taxonomy of emotional experience and expression,” Psychological Science in the

Public Interest, vol. 20, no. 1, pp. 69–90, 2019.

[32] A. S. Cowen and D. Keltner, “Self-report captures 27 distinct categories of emotion bridged by

continuous gradients,” Proceedings of the National Academy of Sciences, vol. 114, no. 38, E7900–

E7909, 2017.

[33] M. Csikszentmihalyi and R. Larson, “Validity and reliability of the experience-sampling method,”

in Flow and the foundations of positive psychology, Springer, 2014, pp. 35–54.

[34] R. J. Davidson, “On emotion, mood, and related a↵ective constructs,” The nature of emotion:

Fundamental questions, pp. 51–55, 1994.

[35] H.-J. De Vuyst, E. Dejonckheere, K. Van der Gucht, and P. Kuppens, “Does repeatedly reporting

positive or negative emotions in daily life have an impact on the level of emotional experiences

and depressive symptoms over time?” PloS one, vol. 14, no. 6, e0219121, 2019.

[36] S. Du, Y. Tao, and A. M. Martinez, “Compound facial expressions of emotion,” Proceedings of

the National Academy of Sciences, vol. 111, no. 15, E1454–E1462, 2014.

[37] B. Eglo↵, A. Tausch, C.-W. Kohlmann, and H. W. Krohne, “Relationships between time of day,

day of the week, and positive mood: Exploring the role of the mood measure,” Motivation and

emotion, vol. 19, no. 2, pp. 99–110, 1995.

[38] G. Eisele, H. Vachon, G. Lafit, P. Kuppens, M. Houben, I. Myin-Germeys, and W. Viecht-

bauer, “The e↵ects of sampling frequency and questionnaire length on perceived burden, compli-

ance, and careless responding in experience sampling data in a student population,” Assessment,

p. 1 073 191 120 957 102, 2020.

[39] P. Ekman, “An argument for basic emotions,” Cognition & emotion, vol. 6, no. 3-4, pp. 169–200,

1992.

[40] ——, “Are there basic emotions?,” 1992.

[41] P. Ekman and W. V. Friesen, Unmasking the face: A guide to recognizing emotions from facial

clues. Ishk, 2003.

[42] P. Ekman and D. Keltner, “Universal facial expressions of emotion,” Segerstrale U, P. Molnar P,

eds. Nonverbal communication: Where nature meets culture, pp. 27–46, 1997.

[43] T. Fawcett, “Roc graphs: Notes and practical considerations for researchers,” Machine learning,

vol. 31, no. 1, pp. 1–38, 2004.

[44] C. Finn, A. Rajeswaran, S. Kakade, and S. Levine, “Online meta-learning,” arXiv preprint

arXiv:1902.08438, 2019.

[45] J. Fogarty, S. E. Hudson, C. G. Atkeson, D. Avrahami, J. Forlizzi, S. Kiesler, J. C. Lee, and J.

Yang, “Predicting human interruptibility with sensors,” ACM Transactions on Computer-Human

Interaction (TOCHI), vol. 12, no. 1, pp. 119–146, 2005.

[46] M. G. Frank and E. Svetieva, “Microexpressions and deception,” in Understanding facial expres-

sions in communication, Springer, 2015, pp. 227–242.

[47] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” Annals of statis-

tics, pp. 1189–1232, 2001.

34



[48] N. H. Frijda et al., “Varieties of a↵ect: Emotions and episodes, moods, and sentiments.,” 1994.

[49] Y. Geifman and R. El-Yaniv, “Selectivenet: A deep neural network with an integrated reject

option,” arXiv preprint arXiv:1901.09192, 2019.

[50] S. Ghosh, N. Ganguly, B. Mitra, and P. De, “Towards designing an intelligent experience sam-

pling method for emotion detection,” in 2017 14th IEEE Annual Consumer Communications &

Networking Conference (CCNC), IEEE, 2017, pp. 401–406.

[51] D. Glowinski, A. Camurri, G. Volpe, N. Dael, and K. Scherer, “Technique for automatic emotion

recognition by body gesture analysis,” in 2008 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition Workshops, IEEE, 2008, pp. 1–6.

[52] T. Goetz, M. Bieg, and N. C. Hall, “Assessing academic emotions via the experience sam-

pling method,” in Methodological advances in research on emotion and education, Springer, 2016,

pp. 245–258.

[53] J. J. Gross and O. P. John, “Individual di↵erences in two emotion regulation processes: Impli-

cations for a↵ect, relationships, and well-being.,” Journal of personality and social psychology,

vol. 85, no. 2, p. 348, 2003.

[54] J. J. Gross and R. W. Levenson, “Emotion elicitation using films,” Cognition & emotion, vol. 9,

no. 1, pp. 87–108, 1995.

[55] G. K. Gudur, P. Sundaramoorthy, and V. Umaashankar, “Activeharnet: Towards on-device deep

bayesian active learning for human activity recognition,” in The 3rd International Workshop on

Deep Learning for Mobile Systems and Applications, 2019, pp. 7–12.

[56] J. Healey, “Recording a↵ect in the field: Towards methods and metrics for improving ground truth

labels,” in International conference on a↵ective computing and intelligent interaction, Springer,

2011, pp. 107–116.

[57] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural net-

works,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[58] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8,

pp. 1735–1780, 1997.

[59] W. Hofmann, R. F. Baumeister, G. Förster, and K. D. Vohs, “Everyday temptations: An ex-

perience sampling study of desire, conflict, and self-control.,” Journal of personality and social

psychology, vol. 102, no. 6, p. 1318, 2012.

[60] V. Hollis, A. Konrad, A. Springer, M. Antoun, C. Antoun, R. Martin, and S. Whittaker, “What

does all this data mean for my future mood? actionable analytics and targeted reflection for

emotional well-being,” Human–Computer Interaction, vol. 32, no. 5-6, pp. 208–267, 2017.

[61] K. Hovsepian, M. Al’Absi, E. Ertin, T. Kamarck, M. Nakajima, and S. Kumar, “Cstress: Towards

a gold standard for continuous stress assessment in the mobile environment,” in Proceedings of the

2015 ACM international joint conference on pervasive and ubiquitous computing, 2015, pp. 493–

504.

[62] Y. Hu, C. Converse, M. Lyons, and W. Hsu, “Neural control of sweat secretion: A review,” British

Journal of Dermatology, vol. 178, no. 6, pp. 1246–1256, 2018.

[63] R. E. Jack, C. Crivelli, and T. Wheatley, “Data-driven methods to diversify knowledge of human

psychology,” Trends in cognitive sciences, vol. 22, no. 1, pp. 1–5, 2018.

35



[64] A. Kapoor and E. Horvitz, “Experience sampling for building predictive user models: A compara-

tive study,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

2008, pp. 657–666.

[65] S. Katsigiannis and N. Ramzan, “Dreamer: A database for emotion recognition through eeg and

ecg signals from wireless low-cost o↵-the-shelf devices,” IEEE Journal of Biomedical and Health

Informatics, vol. 22, no. 1, pp. 98–107, 2017.

[66] D. Keltner, “Toward a consensual taxonomy of emotions,” Cognition and Emotion, vol. 33, no. 1,

pp. 14–19, 2019.

[67] D. Keltner and D. T. Cordaro, “Understanding multimodal emotional expressions: Recent ad-

vances in basic emotion theory,” The science of facial expression, pp. 57–75, 2017.

[68] D. Keltner and J. Haidt, “Social functions of emotions at four levels of analysis,” Cognition &

Emotion, vol. 13, no. 5, pp. 505–521, 1999.

[69] D. Keltner, D. Sauter, J. Tracy, and A. Cowen, “Emotional expression: Advances in basic emotion

theory,” Journal of nonverbal behavior, pp. 1–28, 2019.

[70] D. Keltner, J. L. Tracy, D. Sauter, and A. Cowen, “What basic emotion theory really says for the

twenty-first century study of emotion,” Journal of nonverbal behavior, vol. 43, no. 2, pp. 195–201,

2019.

[71] Z. D. King, J. Moskowitz, B. Egilmez, S. Zhang, L. Zhang, M. Bass, J. Rogers, R. Gha↵ari, L.

Wakschlag, and N. Alshurafa, “Micro-stress ema: A passive sensing framework for detecting in-

the-wild stress in pregnant mothers,” Proceedings of the ACM on Interactive, Mobile, Wearable

and Ubiquitous Technologies, vol. 3, no. 3, pp. 1–22, 2019.

[72] M. Kipp and J.-C. Martin, “Gesture and emotion: Can basic gestural form features discriminate

emotions?” In 2009 3rd international conference on a↵ective computing and intelligent interaction

and workshops, IEEE, 2009, pp. 1–8.

[73] G. A. van Kleef, A. Cheshin, A. H. Fischer, and I. K. Schneider, “The social nature of emotions,”

Frontiers in Psychology, vol. 7, p. 896, 2016.

[74] S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, and I.

Patras, “Deap: A database for emotion analysis; using physiological signals,” IEEE Transactions

on A↵ective Computing, vol. 3, no. 1, pp. 18–31, 2011.

[75] D.-S. Kwon, Y. K. Kwak, J. C. Park, M. J. Chung, E.-S. Jee, K.-S. Park, H.-R. Kim, Y.-M. Kim,

J.-C. Park, E. H. Kim, et al., “Emotion interaction system for a service robot,” in RO-MAN

2007-The 16th IEEE International Symposium on Robot and Human Interactive Communication,

IEEE, 2007, pp. 351–356.

[76] R. J. Larsen and E. Diener, “A↵ect intensity as an individual di↵erence characteristic: A review,”

Journal of Research in personality, vol. 21, no. 1, pp. 1–39, 1987.

[77] R. Larson and M. Csikszentmihalyi, “The experience sampling method,” in Flow and the foun-

dations of positive psychology, Springer, 2014, pp. 21–34.

[78] H. C. Lench and L. J. Levine, “Motivational biases in memory for emotions,” Cognition and

emotion, vol. 24, no. 3, pp. 401–418, 2010.

[79] L. J. Levine and M. A. Safer, “Sources of bias in memory for emotions,” Current directions in

psychological science, vol. 11, no. 5, pp. 169–173, 2002.

36



[80] B. Lika, K. Kolomvatsos, and S. Hadjiefthymiades, “Facing the cold start problem in recommender

systems,” Expert Systems with Applications, vol. 41, no. 4, pp. 2065–2073, 2014.

[81] R. LiKamWa, Y. Liu, N. D. Lane, and L. Zhong, “Moodscope: Building a mood sensor from

smartphone usage patterns,” in Proceeding of the 11th annual international conference on Mobile

systems, applications, and services, 2013, pp. 389–402.

[82] C. H. Lin, M. Mausam, and D. S. Weld, “Active learning with unbalanced classes and example-

generation queries.,” in HCOMP, 2018, pp. 98–107.

[83] J. Liono, F. D. Salim, N. van Berkel, V. Kostakos, and A. K. Qin, “Improving experience sampling

with multi-view user-driven annotation prediction,” in 2019 IEEE International Conference on

Pervasive Computing and Communications (PerCom, IEEE, 2019, pp. 1–11.

[84] C. L. Lisetti and F. Nasoz, “Using noninvasive wearable computers to recognize human emotions

from physiological signals,” EURASIP Journal on Advances in Signal Processing, vol. 2004, no. 11,

p. 929 414, 2004.

[85] V. Markova, T. Ganchev, and K. Kalinkov, “Clas: A database for cognitive load, a↵ect and

stress recognition,” in 2019 International Conference on Biomedical Innovations and Applications

(BIA), IEEE, 2019, pp. 1–4.

[86] H. P. Martinez, Y. Bengio, and G. N. Yannakakis, “Learning deep physiological models of a↵ect,”

IEEE Computational intelligence magazine, vol. 8, no. 2, pp. 20–33, 2013.

[87] R.-E. Mastoras, D. Iakovakis, S. Hadjidimitriou, V. Charisis, S. Kassie, T. Alsaadi, A. Khan-

doker, and L. J. Hadjileontiadis, “Touchscreen typing pattern analysis for remote detection of the

depressive tendency,” Scientific reports, vol. 9, no. 1, pp. 1–12, 2019.

[88] J. D. Mayer, D. R. Caruso, and P. Salovey, “Emotional intelligence meets traditional standards

for an intelligence,” Intelligence, vol. 27, no. 4, pp. 267–298, 1999.

[89] D. McDu↵, M. Amr, and R. El Kaliouby, “Am-fed+: An extended dataset of naturalistic facial

expressions collected in everyday settings,” IEEE Transactions on A↵ective Computing, vol. 10,

no. 1, pp. 7–17, 2018.

[90] G. McKeown, M. Valstar, R. Cowie, M. Pantic, and M. Schroder, “The semaine database: An-

notated multimodal records of emotionally colored conversations between a person and a limited

agent,” IEEE Transactions on A↵ective Computing, vol. 3, no. 1, pp. 5–17, 2011.

[91] A. Mehrotra, F. Tsapeli, R. Hendley, and M. Musolesi, “Mytraces: Investigating correlation and

causation between users’ emotional states and mobile phone interaction,” Proceedings of the ACM

on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 3, pp. 1–21, 2017.

[92] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “E�cient estimation of word representations in

vector space,” arXiv preprint arXiv:1301.3781, 2013.

[93] T. Miu, P. Missier, and T. Plötz, “Bootstrapping personalised human activity recognition models

using online active learning,” in 2015 IEEE International Conference on Computer and Informa-

tion Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure

Computing; Pervasive Intelligence and Computing, IEEE, 2015, pp. 1138–1147.

[94] A. Mollahosseini, B. Hasani, and M. H. Mahoor, “A↵ectnet: A database for facial expression,

valence, and arousal computing in the wild,” IEEE Transactions on A↵ective Computing, vol. 10,

no. 1, pp. 18–31, 2017.

37



[95] M. B. Morshed, K. Saha, R. Li, S. K. D’Mello, M. De Choudhury, G. D. Abowd, and T. Plötz,
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